Valley-polarized quantum anomalous Hall phase in bilayer graphene with layer-dependent proximity effects
نویسندگان
چکیده
Realizations of some topological phases in two-dimensional systems rely on the challenge jointly incorporating spin-orbit and magnetic exchange interactions. Here, we predict formation control a fully valley-polarized quantum anomalous Hall effect bilayer graphene, by separately imprinting proximity effects different layers. This results varying spin splittings for conduction valence bands, which gives rise to gap at single Dirac cone. The phase can be controlled gate voltage switched between valleys reversing sign interaction. By performing transport calculations disordered systems, chirality resilience edge state are demonstrated. Our findings provide promising route engineer that could enable low-power electronic devices valleytronic applications as well putting forward layer-dependent graphene way create versatile states matter.
منابع مشابه
Quantum anomalous Hall effect in single-layer and bilayer graphene
The quantum anomalous Hall effect can occur in singleand few-layer graphene systems that have both exchange fields and spin-orbit coupling. In this paper, we present a study of the quantum anomalous Hall effect in single-layer and gated bilayer graphene systems with Rashba spin-orbit coupling. We compute Berry curvatures at each valley point and find that for single-layer graphene the Hall cond...
متن کاملQuantum anomalous Hall state in bilayer graphene
Citation Nandkishore, Rahul, and Leonid Levitov. "Quantum anomalous Hall state in bilayer graphene. Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. We present a sy...
متن کاملValley-polarized metals and quantum anomalous Hall effect in silicene.
Silicene is a monolayer of silicon atoms forming a two-dimensional honeycomb lattice, which shares almost every remarkable property with graphene. The low-energy structure of silicene is described by Dirac electrons with relatively large spin-orbit interactions due to its buckled structure. The key observation is that the band structure is controllable by applying electric field to silicene. We...
متن کاملQuantum Hall effect, screening, and layer-polarized insulating states in twisted bilayer graphene.
We investigate electronic transport in dual-gated twisted-bilayer graphene. Despite the subnanometer proximity between the layers, we identify independent contributions to the magnetoresistance from the graphene Landau level spectrum of each layer. We demonstrate that the filling factor of each layer can be independently controlled via the dual gates, which we use to induce Landau level crossin...
متن کاملBilayer graphene. Tunable fractional quantum Hall phases in bilayer graphene.
Symmetry-breaking in a quantum system often leads to complex emergent behavior. In bilayer graphene (BLG), an electric field applied perpendicular to the basal plane breaks the inversion symmetry of the lattice, opening a band gap at the charge neutrality point. In a quantizing magnetic field, electron interactions can cause spontaneous symmetry-breaking within the spin and valley degrees of fr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical review
سال: 2021
ISSN: ['0556-2813', '1538-4497', '1089-490X']
DOI: https://doi.org/10.1103/physrevb.104.l161113